Hypergeometric type extended bivariate zeta function

نویسندگان

چکیده

Based on the generalized extended beta function, we shall introduce and study a new hypergeometric-type zeta function together with related integral representations, differential relations, finite sums, series expansions. Also, present relationship between Laguerre polynomials. Our hypergeometric type involves several known functions including Riemann, Hurwitz, Hurwitz-Lerch, Barnes as particular cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursion rules for the hypergeometric zeta function

The hypergeometric zeta function is defined in terms of the zeros of the Kummer function M(a, a+b; z). It is established that this function is an entire function of order 1. The classical factorization theorem of Hadamard gives an expression as an infinite product. This provides linear and quadratic recurrences for the hypergeometric zeta function. A family of associated polynomials is characte...

متن کامل

A Bivariate Gamma-type Probability Function Using a Confluent Hypergeometric Function of Two Variables

Al-Saqabi et al. [4] defined a univariate gamma-type function involving the confluent hypergeometirc function of two variables and discussed some associated statistical functions. We define a bivariate extension of their gamma-type function using another form of a confluent hypergeometric function of two variables and discuss some of its statistical functions.

متن کامل

Hypergeometric Zeta Functions

This paper investigates a new family of special functions referred to as hypergeometric zeta functions. Derived from the integral representation of the classical Riemann zeta function, hypergeometric zeta functions exhibit many properties analogous to their classical counterpart, including the intimate connection to Bernoulli numbers. These new properties are treated in detail and are used to d...

متن کامل

Properties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution

The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...

متن کامل

Hypergeometric Series Associated with the Hurwitz-lerch Zeta Function

The present work is a sequel to the papers [3] and [4], and it aims at introducing and investigating a new generalized double zeta function involving the Riemann, Hurwitz, Hurwitz-Lerch and Barnes double zeta functions as particular cases. We study its properties, integral representations, differential relations, series expansion and discuss the link with known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2023

ISSN: ['0049-2930', '2073-9826']

DOI: https://doi.org/10.5556/j.tkjm.55.2024.5120